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Abstract 

We present a novel formulation of the instanton equations in eight-dimensional Yang-Mills the- 
ory. This formulation reveals these equations as the last member of a series of gauge-theoretical 
equations associated with the real division algebras, including flatness in dimension 2 and (anti-)self- 
duality in 4. Using this formulation we prove that (in flat space) these equations can be understood 
in terms of moment maps on the space of connections and the moduli space of solutions is obtained 
via a generalised symplectic quotient: a K;ihler quotient in dimension 2, a hyperkahler quotient 
in dimension 4 and an octonionic K%hler quotient in dimension 8. One can extend these equa- 
tions to curved space: whereas the two-dimensional equations make sense on any surface, and the 
four-dimensional equations make sense on an arbitrary oriented manifold, the eight-dimensional 
equations only make sense for manifolds whose holonomy is contained in Spin(7). The interpreta- 
tion of the equations in terms of moment maps further constraints the manifolds: the surface must 
be oriented, the 4-manifold must be hyperkahler and the g-manifold must be flat. 0 1999 Elsevier 
Science B.V. All right reserved. 
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1. Introduction 

Gauge theory in higher than four dimensions is rapidly coming of age. Recent develop- 
ments in superstring theory, particularly related to the matrix conjecture of Banks et al. [5], 
point to the existence of supersymmetric quantum gauge theories in dimensions where tra- 
ditionally we would have expected none to exist: five and six dimensions so far, but possibly 
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higher. More recent work [20] also suggests that higher-dimensional instantons [ 10,271 dom- 
inate certain regimes in the moduli space of M-theory. In addition, these higher-dimensional 
instantons are intimately linked to supersymmetry [ 1,2,6-8,13,14] and to the geometry of 
riemannian manifolds of special holonomy: Calabi-Yau and hyperkahler geometries, and 
especially the exceptional geometries in seven and eight dimensions [ 11,24,26]. At the same 
time, very little is known about these generalised instantons: very few solutions are known 
explicitly [12,15,21], and almost nothing is known about the moduli spaces, although the 
deformation complexes are elliptic and formulae for the virtual dimensions can be obtained 
[23,24]. This result notwithstanding, the equality between the virtual dimension and the 
dimension of the moduli space (at least at irreducible points) hinges on the vanishing of the 
higher cohomology of the deformation complex - a question which has yet to be addressed. 

Judging by the four-dimensional case, instanton moduli space has a rich geometry worthy 
of study on its own right. It is likely that a similarly rich geometry will emerge out of the 
study of the moduli spaces of higher-dimensional instantons. This note is a first step in this 
direction. We focus on the generalised instantons in eight dimensions, proving that they fit 
inside a family of gauge-theoretical solitons associated with the division algebras C, W and 
0, and including the flat connections in dimension 2(C) and the (anti-)self-dual connections 
in dimension 4 (W). From this fact, and by analogy with well-known results in the lower 
dimensions, we establish some facts concerning the moduli space of octonionic instantons. 
Among other things, we exhibit the moduli space of octonionic instantons on a flat eight- 
dimensional manifold, as an infinite-dimensional octonionic Kahler quotient. The notion 
of an octonionic K$hler structure is defined and some of its properties are explored in the 
appendix; although a more detailed discussion will be postponed to a separate publication. 

This note is organised as follows. In Section 2 we discuss the family of instanton equations 
in RN associated to the division algebras C (for N = 2), W (for N = 4) and 0 (for N = 8). 
To the best of our knowledge, this formulation of the octonionic instanton equations is novel 
and has the advantage of exhibiting these equations as the last member of a well-established 
sequence. Using this reformulation, we show in Section 3 that the instanton equations can 
be obtained as the zero loci of generalised moment maps and that the moduli spaces of 
instantons can be understood as a generalised symplectic quotient. This is of course well 
known in the complex and quaternionic case. In Section 4 we investigate the extension 
of these results to more general riemannian manifolds. This will single out 8-manifolds 
of Spin(7) holonomy as those admitting the eight-dimensional instanton equations, and 
flat eight-dimensional manifolds as those for which the instanton moduli space can be 
interpreted as an octonionic Kahler quotient. Section 5 contains some conclusions and the 
paper ends with an appendix on octonionic geometry and a possible extension of the notion 
(introduced earlier in paper) of an octonionic Kahler structure. 

2. Instanton equations in RN 

In this section we introduce the (generalised) instanton equations on RN where N = 
2,4, 8. These equations consist in setting to zero the imaginary part of the Yang-Mills 
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curvature in a way that we will make precise. In dimension 2 this equation makes the 
connection flat, in dimension 4 (anti-)self-dual, and in dimension 8 it becomes the octonionic 
instanton equation introduced in [lo]. 

2.1. @-instantons on R2 

A gauge field on R2 has components A,(x) for p = 1,2. It is convenient to consider 
complex-valued gauge fields A(x) = A1 (x)i + AZ(X). Multiplication by i defines a 2 x 2 
real matrix I as follows: 

iA = Zt,A,(x)i + Zz,A,(x). 

The matrix I is given by the standard symplectic structure 

z=t2= 
0 1 ( > -1 0 ’ 

where r2 given above is a Pauli matrix. We say that A, (x) is a C-instanton if its curvature 

F,, satisfies 

Z . F(x) = Z,,F,,(x) = 0. (1) 

From the explicit form of Z we see that C-instantons are nothing but flat connections: 
Fwv(x) = 0. 

2.2. O-U-instantons on R4 

Gauge fields A,(x) in R4 can be thought of as quaternion-valued 

A(x) = A,(x)q, = Al( + A2Cr)j + A3(x)k + A4(xL 

where we have introduced a basis qcL = (i, j, k, I} for the quaternion units. Left multipli- 
cation by the imaginary units defines real 4 x 4 matrices I, J and K as before: 

iA = IpuA”(x)qp, 

jA(x) = JFuA”(x)q,, 

kA(x) = K,,Au(x)q,. 

Explicitly, we have 

I=(: z), _Z=(:I i) and K=(-2 z). 

The matrices I, J and K obey the quaternion algebra Z2 = J2 = K2 = -1 and Z J = K, 
etc. They also obey the anti-self-duality equation 

ZcLv = -&~~oZ~cr, 
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and similarly for .Z and K. We say that A,(x) defines an W-instunton if the following 
equations are satisfied: 

1. F(x) = .Z. F(x) = K . F(x) = 0, (2) 

This means that F,,(x) is self-dual: 

FP” = ;+vpo Fpa. (3) 

In other words, A,(x) is an instanton in the ordinary sense. 
The anti-instanton equations are recovered by considering right multiplication by the 

conjugate imaginary units on the quatemionic gauge field A(x). This gives rise to matrices 
I, J” and Z? which are now self-dual. The matrices are different because W is not commutative. 
The analogous equations to (2) but with the tilded matrices, now say that Fwu(x) is anti- 
self-dual-in other words, A,(x) is an anti-instanton. 

2.3. 0instantons on R* 

Let us consider a gauge field A,(x) in R8 and turn it into an octonion-valued field 

A(x) = A,(x)o, = Ai(x)oi + As(x), 

where we have introduced a basis oP for I_L = 1, . . . , 8 for the octonions such that oi 
fori = l,... , 7 are the imaginary units and Oa is the identity. Left multiplication by the 
imaginary units oi gives rise to real 8 x 8 matrices I’ as follows: 

oiA(x) = Z~,A”(X)O~. 

The matrices I’ cannot satisfy the octonion algebra, because unlike octonion multiplica- 
tion, matrix multiplication is associative. Nevertheless they satisfy the seven-dimensional 
euclidean Clifford algebra Cl (7) : 

1iz.j + z.ifi = -26. .1 ‘I . 

We define an O-instanton as a gauge field A,(x) subject to the seven equations 

(4) 

I’ . F(x) = 0. (5) 

Explicitly, for a particular choice of basis, these seven equations are given by 

F12 - F34 - F5a + &I = 0, 

F13 -t F24 - F~I + F6a = 0, 
F14 - F23 f F56 - F7a = 0, 
Fi5 + F2a + F37 - F46 = 0, 

F16 - F27 + F3a + F45 = 0, 

FIT-IF~~--F~~+F~~=O, 

Fla - F25 - F36 - F47 = 0. 

(6) 
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They can be written in a way analogous to the self-duality equation (3): 

FFv = $&&o, (7) 

where !ZPUpU are the components of a 4-form in R8 given by 

Q = -;I’ A li (8) 

In fact, Eq. (7) is the way in which the octonionic equations are usually presented (see, for 
example, [lo]). Let us remark that in analogy with the classical four-dimensional instantons, 
a gauge field A,(x) obeying Eq. (5), automatically satisfies the Yang-Mills equations of 
motion: Dp F,, = 0, as a consequence of the Bianchi identity: Dl, F,,] = 0. 

The 4-form 52 is self-dual, as can be seen by the following construction. Octonion mul- 
tiplication defines a 3-form (p in R’ by 

Oi Oj = -6ij 08 + pijk ok. 

Our choice of basis is such that 

p = O125 + 0136 + 0147 - 023’ + 0246 - 0345 + 0567, 

where we have used the shorthand Oijk = Oi A Oj A Ok. We now consider the seven- 
dimensional Hodge dual of (a 

ij = *7q = 01234 - 01267 + 01357 - 01456 + 02356 + 02457 + 03467. 

Thinking of @ as a 4-form in R*, its eight-dimensional Hodge dual is given by q A 08, 

whence we can define a self-dual 4-form Q in lR8 as follows: 

Q=@+(DA08 

= 01234 + 01258 - 01267 + 01357 + 01368 - 01456 + 01478 

+02356 - 02378 +02457 +02468 -03458 +03467 +05678. 

This is precisely the 4-form defined in (8). 
Interpreting R8 as the vector representation of SO(8), the 4-form S2 is left invariant by a 

Spin(7) subgroup of SO(8), one under which the vector representation remains irreducible. 
There are three conjugacy classes of Spin(7) subgroups in Spin(8), which are related by 
triality. Each of these subgroups are maximal and they can be distinguished by which one of 
the three eight-dimensional irreducible representations of Spin(8) they split. Two of these 
subgroups, call them Spin(7)*, leave the vector representation irreducible, but split one of 
the two spinor representations. Let Spin(7)+ be the one leaving invariant the 4-form C2 in 
(8). There is a similar set of equations to the O-instanton equations but using instead the 
4-form d which is invariant by Spin(7)-. These equations are obtained analogously to (5) 
but using the matrices r’ obtained by right multiplication by the conjugate imaginary units. 
Indeed the 4-form fi is given by Eq. (8) but using the tilded matrices instead. A gauge field 
obeying these equations will be referred to an octonionic anti-instanton or O-anti-instanton. 
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2.4. Another reformulation 

The instanton equations can be reformulated in yet another way: as the reality of a 
laplacian-type operator defined on vector bundles of type A associated to the principal 
gauge bundle. We turn to this now. 

Let {e@} denote generically a set of units for the division algebra A, being one of C, W or 
0, and let (ZP} denote their A-conjugates. Let N = dim A stand for the real dimension of 
A. We will choose our set of units such that e,v = 1 and {ei}L<l are imaginary. If o E A we 
will let Re o denote its real part; i.e., Re owe,, = ON. Let D, denote the covariant derivative, 
and let D = Dpe,. We can think of D as acting on A-valued fields @ (with values in some 
unitary representation of the gauge group). Given two such A-valued fields @, $I we define 
their inner product as 

dvolTr Re +‘@, 

RN 

where N is the real dimension of A, Tr means the gauge invariant inner product, and + 
involves conjugation in A as well as in the representation of the gauge group. Let Dt denote 
the formal adjoint of D relative to this inner product 

Dt = -D,e,. 

It follows immediately from the first of the two identities 

(9) 

that 

DtD = -D21 +ekIk. F(A), 

where D2 = D,D,. Therefore, we see that the A-instanton equations (l), (2) and (5) are 
equivalent to 

Im(D+D) = 0 or equivalently DtD = -D21. 

Similarly from the second identity in (9), it follows that 

DDt = -D*i i- ekik . F(A), 

whence the A-anti-instantons are the solutions to the opposite equation 

Im(DD+) = 0 or equivalently DDt = -D21. 

3. Instantons and moment maps 

In tbis section we show that the instanton equations (l), (2) and (5) can be understood 
as the zeroes of moment maps associated to the gauge transformations on the space of 
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connections. This will prove that the moduli space of instantons can be seen in each case as 
a generalised symplectic quotient: a KShler quotient in the complex case [4], a hyperkahler 
quotient [ 191 in the quatemionic case [3], and an octonionic K;ihler quotient in the octonionic 
case. To the best of our knowledge, this latter quotient construction is new. 

As before we let A be any one of the division algebras C, W or 0, and let N = dim A 
be its real dimension. Let us denote by Aa the space of A-valued gauge fields on RN. 
The space dpi is an infinite-dimensional affine space modelled on the space of Lie-algebra 
valued l-forms on IWN, and it inherits some geometric structure: it is K&hler for A = C, 
hyperkahler for A = W and octonionic Kahler (see below) for A = 0. The group of gauge 
transformations leaves these structures invariant and will give rise to moment maps whose 
components are nothing but the A-instanton equations. As a result the moduli space Ma 
of A-instantons can be understood as a generalised symplectic quotient of AA. This is of 
course well known for A = C and A = W. In what follows we will treat all three cases 
simultaneously. 

3.1. AA as an injnite-dimensional A-Kiihler space 

We will use the following notation: A(x) is a Lie algebra- and A-valued gauge field on 
IWN. We will let A(x) denote its A-conjugate. We will let Tr denote the invariant metric on 
the Lie algebra and Re denote the real part of an element of A. The tangent space to the 
space AA of connections is the space of Lie algebra- and A-valued 1 -forms. Let S 1 A(x) and 
&A(X) be two such l-forms. As above we will let ecL denote a basis for the A-units, with 
eN being the identity and ei for i = 1, . . . , N - 1 being imaginary. Then if z = zPeP E A 
with z+ E [w, we can define the following bilinear form: 

((~~A,SZA))~ = / dvolTr Rez6rA82A. 
J 

Expanding this out, we have 

((JrA, &A))z = ziJ(StA, &A) + ZN&T(JlA, 62A), 

where the metric g is defined by 

d&A, J2A) = 
J 

dvolTr ReSlA&A, (10) 
FP 

and the N - 1 2-forms wi by 

w’(S,A, &A) = 
s 

dvolTrReei 61Am. 

RN 

(il) 

In components, we have 

g(bA, 82A) = 
s 

dvolTr 61 A, &A,, 
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and 

o&&A, S2A) = 
.I 

dvolZ~UTr6iA,62AP. 

It is then easy to see that the metric is indeed symmetric and that the 2-forms are antisym- 
metric. Moreover, both g and wi are constant (i.e., do not depend on the connection A(x) 
on which they are defined) and hence covariantly constant relative to the Levi-Civita con- 
nection corresponding to g. We see that AA is therefore (formally) KShler for A = C and 
hyperkahler for A = E-U. For A = 0, it not hard to see that this makes AA into what we call an 
octonionic Kiihler space. We use this term in a rather narrow sense which we now explain. 

We start with R8, which we think of as the octonions CD. The real matrices I’ defined 
by left (or right) multiplication by the imaginary unit octonions satisfy the Clifford algebra 
CC(7) in (4). In particular, each I’ is complex structure relative to which the standard 
euclidean metric is hermitian. 

Let X be a riemannian manifold. For the purposes of this paper, we will say that X 
is octonionic (almost) hermitian if it admits orthogonal (almost) complex structures (I’} 
satisfying the algebra (4). In addition, we will say that an octonionic hermitian manifold X 
is octonionic Kiihler (or OK) if the associated 2-forms wi are KShler. 

In Appendix A it is shown that octonionic Kahler manifolds are severely constrained and 
it is therefore not clear that this is an interesting geometrical concept. We therefore discuss a 
potentially much more interesting extension of this notion akin to the notion of quaternionic 
K5hler. 

If we do not need to specify A, we will simply say that AA is A-KZihler. Therefore C- 
K5hler means Kahler, W-K%hler does not mean quaternionic K8hler but hyperkalrler, and 
O-K%hler means OK. 

3.2. The A-valued moment map 

The group of gauge transformations acts by conjugation on the tangent vectors 6A and 
commute with the action of A. Because Tr is pointwise invariant under conjugation, we 
see that both the metric and the KShler forms are gauge invariant. Let us analyse more 
closely the invariance of the K&hler forms under infinitesimal gauge transformations; i.e, 
under 6A = DE, where D = ecr D, is the A-valued covariant derivative and E is a Lie 
algebra valued function on RN. Taking our cue from the finite-dimensional case, when the 
Lie derivative along a vector field u of a closed 2-form w is zero, the contraction I (v)w is 
locally exact, whence there exists (at least locally) a function @ (u) so that I (u)w = d# (u) . 
The functions @ (u) are the components of the moment map. 

In our case, we have that the contraction of the closed 2-form oi with the infinitesimal 
gauge transformation DE is given by 

wi(De, 6A) = dvol Tr Re ei DE 6A 
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= 
s 

dvol ZLUTr Dug 6A, 

RN 

235 

= 
s 

dvol ZL”Tr e D,6A, 

RN 

= 
J 

dvol Zb”Tr E SF,,. 

RN 

In other words, the components of the moment map are 

d(E) = s dvol Tr Eli . F. 

RN 

The moment map itself is given by 

d = I’ . F(A), 

which can be thought of as a map from the space Am of connections to the dual of the Lie 
algebra Lie(G) of the group of gauge transformations. Acting on an element E in Lie(G), 
we obtain a’ (6). The zero locus of the moment map @’ consists of those connections for 
which I’ . F = 0. 

Furthermore the moment map, as a function @” : dm + Lie(E)*, is equivariant under 

the infinitesimal action of 6, acting on dA as infinitesimal gauge transformations and on 
Lie(G)* as the coadjoint representation. To see this notice that, if E, r] E Lie(G), then 

&a+(q) = s dvolTrnZ’ .&F(A) 

UP 

= s dvol Tr 17 I’ . [F, E] 

UP 

= dvol Tr [c, n] I’ . F 

This means that the zero locus of the moment map a’ is preserved by 6 and we can consider 
the orbit space. Let di c dA denote the set of connections A for which a’ = 0 for all 
i. This is nothing but the space of A-instantons, whence the orbit space Ai/6 is then the 
moduli space MA. It is then possible to prove that the moduli space Ma of A-instantons on 
RN is (formally) an infinite-dimensional A-K2hler quotient of the space da, of connections. 
This is of course well known for A = C (respectively, A = W), where the moduli space 
inherits the structure of a Kahler (respectively, hyperkahler) manifold. It can be shown that 
this persists in the octonionic case. Details will appear elsewhere. 



236 J.M. Figueroa-O’Farrill/Joumal of Geometry and Physics 32 (1999) 227-240 

4. Instantons on riemannian manifolds 

In this section we investigate whether the instanton equations (l), (2) and (5) make sense 
on manifolds other than R*, OX4 and E@, respectively, and whether the interpretation in terms 
of moment maps persists. We will see that although the complex and quatemionic instantons 
make sense on any (oriented) riemannian manifold of the right dimension, the octonionic 
equations only make sense in a manifold whose holonomy is contained in Spin(7). Moreover, 
the interpretation of the W-instanton equations in terms of moment maps will force the 
manifold to be hyperkahler, whereas for the @instanton it will force it to be flat. 

4.1. The instanton equations on riemannian manifolds 

In order for the A-instanton equations to make sense on an arbitrary manifold, it is 
necessary that the structure group of the tangent bundle preserve the subbundle of 2-forms 
which define the equations. We will take all our manifolds to be riemannian, so that the 
group of the tangent bundle reduces to O(N). Any further reduction of the structure group 
can then be understood as a reduction of the holonomy of a metric connection with torsion. 

.In the two-dimensional case, the bundle of 2-forms is a line bundle, hence under a change 
of coordinates the 2-form I will always go back to a multiple of itself. Therefore the @- 
instanton equation makes sense on any two-dimensional manifold. 

In four dimensions, the 2-forms I, J, and K are a local basis for the anti-self-dual a-forms. 
The maximal subgroup of O(4) which respects the split A2 = A: $ r\? into self-dual 
and anti-self-dual 2-forms is SO(4), whence provided that the manifold is oriented, the 
W-instanton equations make sense. This can also be understood from the alternate form 
(3) of the E-U-instanton equations: we now need that the volume form sPvpo exist globally, 
which again means that the manifold is oriented. 

In eight dimensions we obtain a stronger restriction on the manifold. The structure group 
must respect the split A2 = r\i @ /j&, where r\; is the subbundle spanned by the I’ and 
/\f, is its orthogonal complement. This latter subbundle is spanned by the anti-symmetric 
products I’ Zj - ZjZi and hence corresponds to the Lie algebra SO(~). The above split is 
the eigenspace decomposition of the map A* -_) A2 defined by w H *(a A o) with 
Q defined by (8). The maximal subgroup of SO(8) which preserves C2, and hence the 
above split, is Spin(7)+. Therefore the manifold must admit a Spin(7)+ structure. This is 
not all, however. The Bianchi identity will imply that any instanton obeys the Yang-Mills 
equations of motion, provided that the 4-form Q be closed. By a result of Bryant [9] this is 
equivalent to the holonomy group of the metric being contained in Spin(7)+. In other words, 
octonionic instantons are only defined on riemannian manifolds with holonomy contained in 
Spin(7)+. Similarly, octonionic anti-instantons are only defined on &manifolds admitting 
a metric with holonomy contained in Spin(7)-. Hence a generic manifold will not admit 
both 0-instantons and O-anti-instantons. For this to be the case, the manifold must admit 
a metric whose holonomy is contained in Spin(7)+ n Spin(7)- g G2, so that the manifold 
is locally reducible. 
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Table 1 
kinstanton eauations and their allowed manifolds 

A A-instanton (dim &-Manifolds admitting 
Instanton equation Quotient construction 

cc 
w 
0 

F=O 
F=f*F 

F 6 A;, 

Arbitrary 
Oriented 
Spin(7) holonomy 

Oriented 
Hyperk%hler 
OK (=+ flat) 

4.2. Moment maps for instantons on riemannian manifolds 

Finally we investigate the persistence of the interpretation of the A-instanton equations 
as the zero locus of a moment map in the space dA of connections, and hence of the moduli 
space as an infinite-dimensional A-K;ihler quotient. 

For this to be the case, we have to endow dA with the structure of an infinite-dimensional 
A-K&ler manifold. It is not hard to show that now it is no longer sufficient to preserve 
the subbundle of 2-forms spanned by the I” but that each I’ must be invariant under the 
holonomy group. In two dimensions this constrains the surface to be K;ihler, which is simply 
the condition that it be oriented. In four dimensions, the fact that I, J, and K are constant 
under the holonomy group, trivialises the bundle of anti-self-dual forms. The holonomy 
must then be contained in one of the Sp( 1) factors in SO(4); in other words, the manifold 
must be hyperktiler. Finally, in eight dimensions the fact that the I’ are parallel, means 
that the manifold is octonionic KUer, which as discussed in Appendix A, implies that it is 
flat. We summarise these results in Table 1. 

5. Conclusion 

In this paper we have reformulated the eight-dimensional instanton equation introduced 
in [lo] in a way that exhibits it naturally as a member of a family of equations associated 
to the real division algebras C, W and CD, and comprising flatness in dimension 2 and self- 
duality in dimension 4. The usual way in which the octonionic equations are presented, 
namely Eq. (7), has the advantage of suggesting generalisations to geometries in which one 
has a co-closed 4-form, but at the same time obscures the relative simplicity of the equations. 
Moreover, it does not distinguish the eight-dimensional case from the other ones, and it also 
treats both Eq. (7) and the dual equation [lo], 

on an equal basis. In fact, one often finds in the literature that Eqs. (7) and (12) are referred to 
as the self-duality and anti-self-duality equations, respectively. This nomenclature suggests 
a symmetry between these equations which is not present in the octonionic case since, 
for example, the spaces have different dimension. In our opinion, self-duality and anti- 
self-duality correspond to which way the division algebra A acts: if on the left or on the 
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right, and are hence related by a change of orientation on the manifold. Although there has 
been some work in the literature concerning Eq. (12), we believe this equation not to be as 
fundamental as (7). This can already be seen not just in the results of the present paper but 
also, for example in [ 11, where it is shown that supersymmetry singles out Eq. (7). Another 
argument in favour of Eq. (7) is the following: at any given point in the manifold, Eq. (12) 
is a system of 21 equations for eight unknowns and is hence overdetermined; whereas on 
the other hand, Eq. (7) is a system of seven equations (and the Bianchi identity) for eight 
unknowns, 

There is yet a third notion of eight-dimensional instantons associated to the octonions 
which has appeared in the literature. It is a classical observation credited to Trautman, that 
the natural connection on the Hopf bundle S3 --f S7 + S4 is a Yang-Mills instanton. 
Departing from this observation, several authors [ 17,18,22,25] sought to endow the “last” 
Hopf map S7 + S15 + S* with a similar gauge-theoretic interpretation, this time in eight 
dimensions. The eight-dimensional instanton obtained from the last Hopf map, however, is 
not a minima of the standard Yang-Mills action functional but of one which is quartic in 
the curvature. It is of course also the octonionic member in a sequence of gauge-theoretic 
objects, namely the Hopf maps. As discussed above, the octonionic instanton equations (12) 
cannot be defined on S8, in contrast with the ones coming from the Hopf map. Both equations 
are defined on R8 but as the (standard) quadratic Yang-Mills action is not conformally 
invariant in eight dimensions, the equations do not extend to S8. In contrast, the instanton 
equations associated to the Hopf map do. This can be seen in two ways. First of all, they 
minimise a conformally invariant action. Secondly, these equations imply the self-duality 
in eight dimensions of a 4-form constructed by squaring the Yang-Mills curvature, and it is 
well known that the Hodge star operator acting on middle-dimensional forms is conformally 
invariant. 

The original motivation for this paper was to examine the moduli space of octonionic 
instantons for Spin(7) holonomy 8-manifolds. Alas, we have found that unless the manifold 
is flat, the moduli space cannot be described as an octonionic Ghler quotient. Nevertheless 
the geometry of the manifold on which the instanton equations are defined does influence 
the geometry of the moduli space of instantons. For example, the moduli space of instantons 
on a IGhler 4-manifold is itself Kahler, even though it loses its interpretation as a K5hler 
quotient. Similarly it is possible to show that if the holonomy of the 8-manifold is further 
reduced, say to a subgroup of SU(4) c Spin(7), then the moduli space inherits a Kahler 
structure. In this case, the instanton equations are the celebrated Donaldson-Uhlenbeck-Yau 
equations. 

In [ 141 we used supersymmetry to exhibit a relation between two very different spaces: 
the octonionic instanton moduli space on an 8-manifold A4 x K, where M and K are 
hyperkahler 4-manifolds in the limit in which K shrinks to zero size; and the space of 
triholomorphic curves (or hyperinstantons) M + MM(K). It seems plausible that the 
results in this paper can be used to understand the geometry of the space of hyperinstantons 
better. 

In analogy to what happens in four dimensions, certain octonionic instantons can be 
understood as monopoles in seven dimensions. These equations, which generalise the 
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Bogomol’nyi equation, can be defined on any riemannian 7-manifold A4 of G2 holonomy. 
Very little is known about the moduli spaces of these monopoles, but it follows from the 
results in this paper that when M is flat, the moduli space is OK. 
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Appendix A. Some octonionic geometry 

In this appendix we summarise the basic notions of octonionic geometry as used in this 
paper. Octonionic geometries and their torsioned generalisations have been studied recently 
in [16] where they are exhibited as the geometries of the moduli space of some solitonic 
black holes. As these authors never define the term octonionic Kahler, the definition above 
is not in conflict with that paper. Nevertheless, our definition is rather narrow and in order 
to obtain interesting geometries one must relax it, either as was done in [ 161 or alternatively 
as we suggest below. 

The existence of an octonionic KWer structure on a riemannian manifold imposes strong 
constraints on the manifold. First of all we have that the dimension of a finite-dimensional 
octonionic (almost) hermitian manifold X is divisible by 8. This follows from the fact that 
each tangent space TpX admits an action of U(7), whose representations are always 8k- 
dimensional. The geometry is also very constrained. For example, an eight-dimensional 
OK manifold X is necessarily flat. This can be proven as follows. The fact that X is OK 
means that it is Kahler with respect to each of the complex structures I’, whence VI’ = 0. 
Because the I’ generate Ce(7), it follows that the holonomy group commutes with the action 
of Cl (7). Since CL(7) acts irreducibly on the tangent space, the restricted holonomy group 
is trivial. It seems rather likely that the geometry of OK manifolds is similarly constrained 
in higher dimensions. 

This prompts us to try to generalise OK geometry in such a way that it admits interesting 
examples. For example, as done in [16] one can relax the condition that V be torsionless 
and also substitute VI’ = 0 with a weaker condition (see (3.33) in [ 161). This yields the so- 
called OKT geometries. Another approach, more in line with quaternionic K&hler geometry, 
would be to demand that the almost complex structures I’, satisfying (4), only exist locally. 
Then one would impose that the seven-dimensional subbundle of the 2-forms spanned by 
the I’, instead of being trivial, be preserved by the holonomy group. In eight dimensions, as 
we saw in Section 4.1, this singles out those riemannian manifolds whose holonomy group 
is contained in Spin(7). In 8k > 16 dimensions any such manifold must be reducible, as can 
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be gleaned from Berger’s list of irreducible holonomy representations. Nevertheless it seems 
tempting to try and develop a theory of such manifolds and in particular to try to use them 
to construct eight-dimensional Spin(7) holonomy manifolds by a quotient construction. 
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